
Example

Fix the basic dimensions of elevated intze water tank to store 6 lacs litre water. Design and detail all structural components. Take live load = 1.5 kN/m^2 . Use M30 grade concrete and Fe415 grade steel.

* Solution :-

(1) Dimensions: \rightarrow Let, Dia. of tank (D) = 12 m. Dia. of lower $R.B(D_0) = 8m.$ (OR $0.6 \times 12 = 7.2 m$). Rise of top Domo (h,) = 2m (OR 0.2×12 = 2.4m) Rise of Bottom Dome (h2) = 1.5 m (OR 0.2 x12 = 2.4 m). Height of conical dome (ho) = 2 m. Height of cylindrical portion (h) = ? : Capacity of tank = $(\frac{1}{4} \times 0^2 \times h) + \frac{1}{12} \times h_0 (0^2 + 0^2 + 0.0_0) - \frac{1}{3} \times h_2 (3R_2 - h_2)$ $\therefore 600 = \left(\frac{\pi}{4} \times 12^2 \times h\right) + \frac{\pi}{12} \times 2 \times \left(12^2 + 8^2 + 12 \times 8\right) - \frac{\pi}{3} \times 1.5^2 \times (3 \times 6.08 - 1.5)$ ·· 600 = (113.09xh) + (159.17) - (39.44) : h = 4.24 m & say h=5m.

(2) Design of Top Dome:-
(i) Mericlional fasce.
(ii) Hoop force.

$$\stackrel{w}{=} Meridional fasce: (T_{1})$$

$$T_{1} = \frac{wR}{1+(as0, 1+cas0, 1+cas0, 2+cas0, 2+cas0$$

$$-> \sin Q = \frac{D/2}{R} = \frac{6}{10} = 0.6$$

$$\therefore Q = 36.86^{\circ}$$

$$\therefore$$
 (080 = 0.50.

$$\Rightarrow T_{1} = \frac{4 \times 10}{1 + 0.50} = 22.22 \text{ ITN/m}.$$

$$\Rightarrow \text{Mexiclional stress} = \frac{22.22 \times 10^{3}}{1000 \times 100} = 0.22 \text{ N/mm}^{2} \times 5$$

$$\Rightarrow \frac{0.15}{1000 \times 100} = 0.22 \text{ N/mm}^{2} \times 5$$

.

$$\stackrel{\text{Lin}}{=} Hoop \quad force:$$

$$T_{2} = WR_{1} \left[cas \Theta - \frac{1}{1 + cas \Theta} \right]$$

$$= 4 \times 10 \left[0.50 - \frac{1}{1 + 0.50} \right]$$

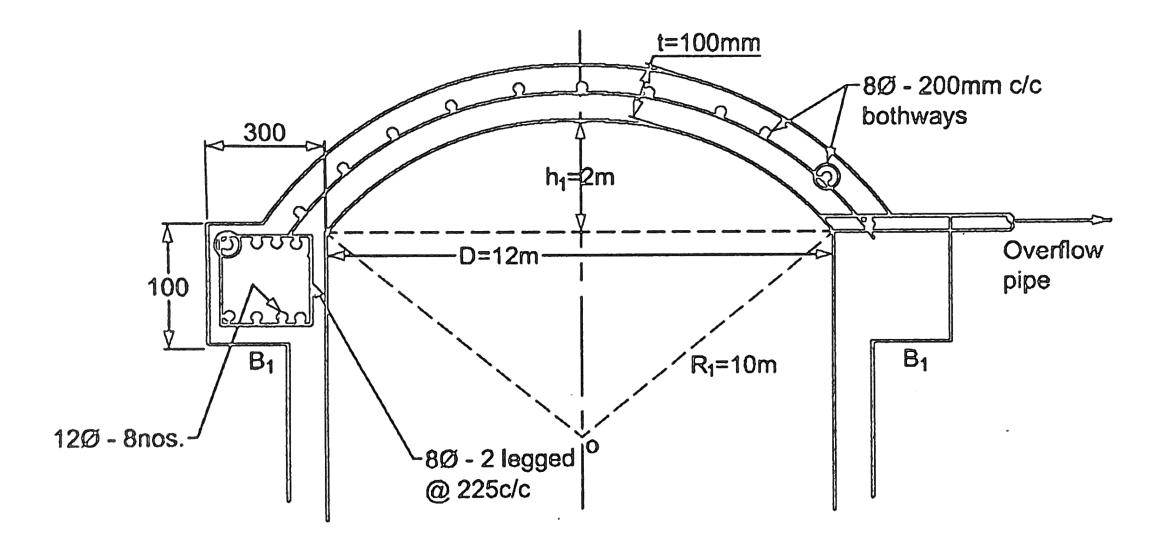
$$= 9.75 \quad \text{IrH/m}.$$

$$\Rightarrow Hoop \quad \text{stress} = \frac{9.74 \times 10^{2}}{1000 \times 100} = 0.0978 \quad \text{H/mm}^{2} < \frac{9}{5} \frac{0.15}{1000}$$

$$\therefore \quad \text{frounde nominal seinf. (0.24.1.)}$$

$$\therefore \quad \text{fs-1} = \frac{0.24}{100} \times 1000 \times 100 = 240 \text{ mm}^{2}.$$

$$\therefore \quad \text{frounde S-mm} \notin (200 \text{ mm} \text{ c/c}.$$


(3) Design of top Ring Beam (B₁):

$$\Rightarrow$$
 Heariz. component of Mericlional force (T₁)
 $\omega = T_1 \cos \theta = 22.22 \times \cos \theta = 17.77 \text{ Hrm/m.}$
Total Hoop tension in beam,
 $= \frac{\omega \times D}{2} = \frac{17.77 \times 12}{2} = 106.62 \text{ Hrm.}$
 $\Rightarrow \text{Ast for hoop tension} = \frac{106.62 \times 10^3}{130} = 820 \text{ mm}^2$
 $\Rightarrow \text{Brounde} 12 \oplus (2) 130 \text{ mm c/c. CAst} = 869 \text{ mm}^2)$

=>
$$Oct = T$$

Ag + (m-1) Ast. Is: 456-2000, Pg-80.

$$\frac{106.62 \times 10^{3}}{50 + (m-1) \text{ Ast}} \leq 1.5 \text{ let } b = 300 \text{ mm}.$$

$$\frac{106.62 \times 10^{3}}{300 \times 0! (9.33 - 1) \times 969} \leq 1.5^{-1}$$

(i) Design of Cylinderical Wall:-

$$T = \frac{w \times h \times p}{2} = \frac{10 \times h \times 12}{2} = 60 h \text{ Kiv/m.}$$

$$Ast = \frac{T}{130} = \frac{60 h}{130} \times 10^3 = 461.54 h \text{ mm}^2.$$

Depth from top (h) m	Area required A _{st} , mm ² (461.54 <i>h</i>)	Area on each face mm ² (230.76 h)	Reinforcement Provided on both faces (horizontal)
1	461.54	230.76	$8 \phi @ 210 c/c (A_{st} = 239 mm^2)$
2	923.0	461.54	$10 \phi @ 170 c/c (A_{st} = 462 mm^2)$
3	1384.62	692.31	$10 \phi @ 110 c/c (A_{st} = 714 mm^2)$
4	1846.16	923	$12 \phi @ 120 c/c (A_{st} = 942 mm^2)$
5	2322.70	1161.35	$16 \phi @ 170 c/c (A_{st} = 1183 mm^2)$

=> Distribution steel:
-> Provide minimum steel (0.24.1.)
: Astmin =
$$\frac{0.24}{100} \times 1000 \times 225 = 540 \text{ mm}^2$$
.
: Ast on each fare = $\frac{540}{2} = 270 \text{ mm}^2$.
: Bouide $80 - 180 \text{ mm} c/c (Ast = 279 \text{ mm}^2)$.

