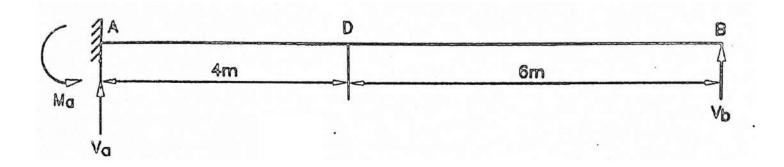
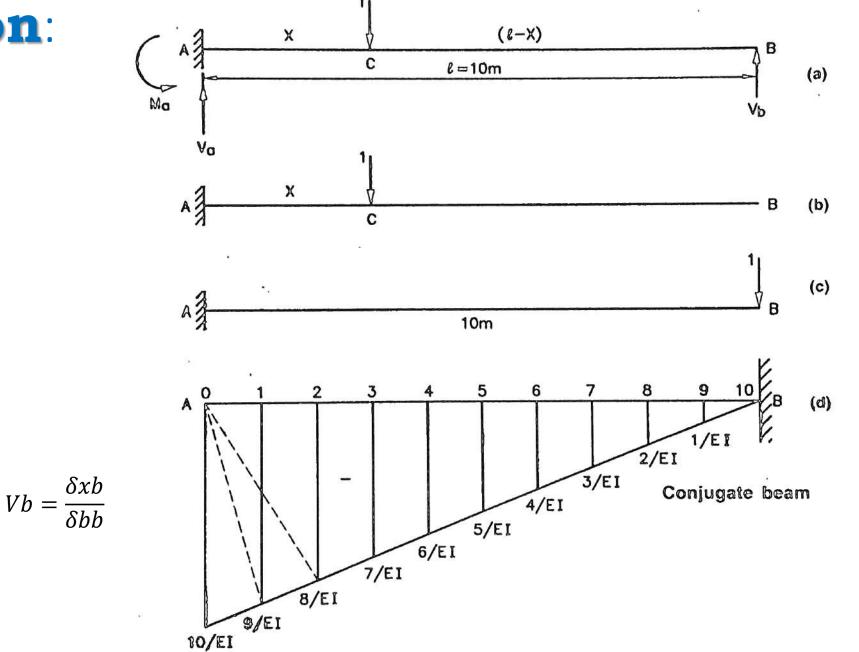
Influence Line Diagram

For I.L.D. for Indeterminate SHEAR FORCE Structures **BENDING MOMENT**

Solved Example



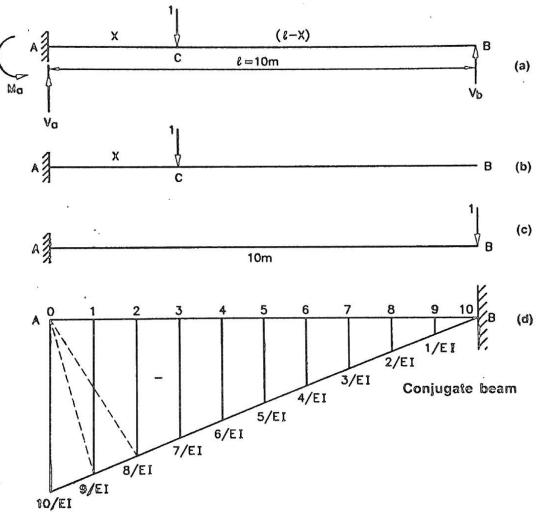


Example

A propped cantilever beam is having 10m span. Draw ILD for S.F. & B.M. at section 4m from the fixed end.

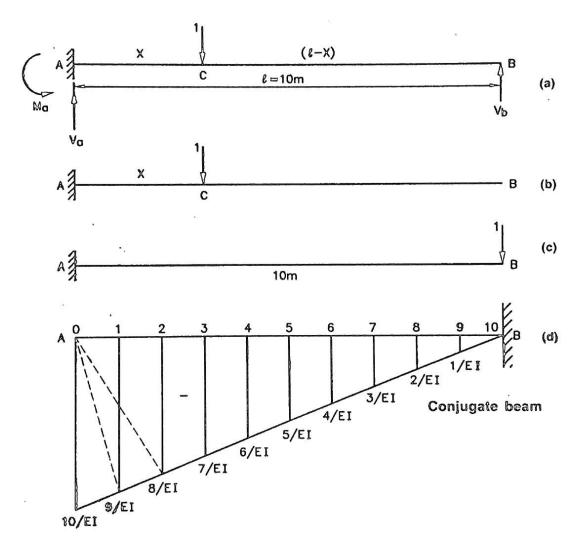
Solution:

We know that, for a conjugate beam, deflection at any point = B.M. at that point divided by EI


• $\delta_0 = 0$

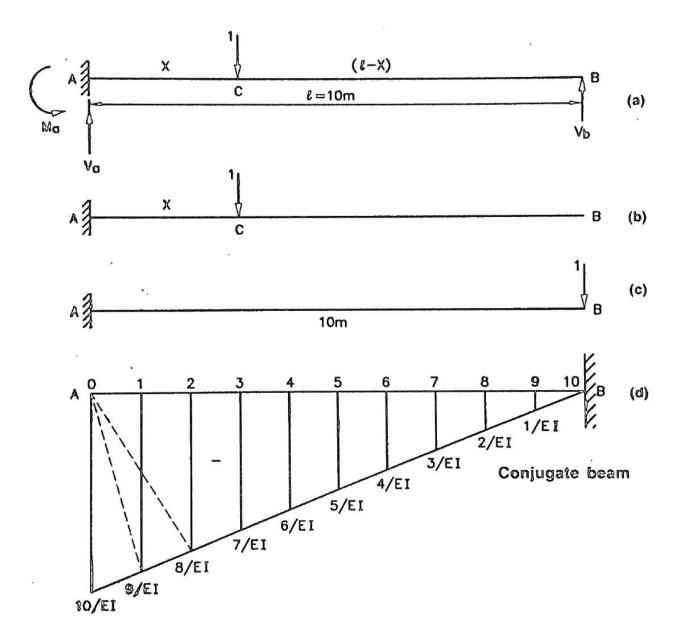
•
$$\delta_1 = (\frac{1}{2} * 1 * 10) * \frac{2}{3} * 1 + (\frac{1}{2} * 1 * 9) * \frac{1}{3} * 1 = 4.83$$

• $\delta_2 = (\frac{1}{2} * 2 * 10) * \frac{2}{3} * 2 + (\frac{1}{2} * 2 * 8) * \frac{1}{3} * 2 = 18.66$


•
$$\delta_3 = \left(\frac{1}{2} * 3 * 10\right) * \frac{2}{3} * 3 + \left(\frac{1}{2} * 3 * 7\right) * \frac{1}{3} * 3 = 40.5$$

•
$$\delta_4 = \left(\frac{1}{2} * 4 * 10\right) * \frac{2}{3} * 4 + \left(\frac{1}{2} * 4 * 6\right) * \frac{1}{3} * 4 = 69.33$$

•
$$\delta_5 = \left(\frac{1}{2} * 5 * 10\right) * \frac{2}{3} * 5 + \left(\frac{1}{2} * 5 * 5\right) * \frac{1}{3} * 5 = 104.16$$

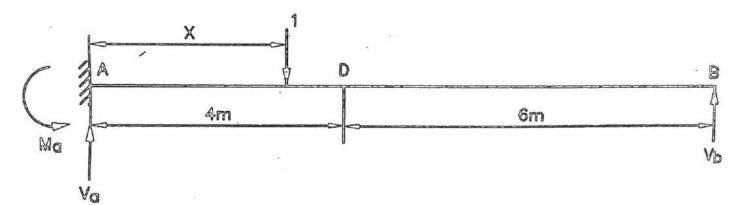

•
$$\delta_6 = (\frac{1}{2} * 10 * 6) * \frac{2}{3} * 6 + (\frac{1}{2} * 4 * 6) * \frac{1}{3} * 6 = 144.0$$

• $\delta_7 = (\frac{1}{2} * 10 * 7) * \frac{2}{3} * 7 + (\frac{1}{2} * 3 * 7) * \frac{1}{3} * 7 = 187.83$
• $\delta_8 = (\frac{1}{2} * 10 * 8) * \frac{2}{3} * 8 + (\frac{1}{2} * 2 * 8) * \frac{1}{3} * 8 = 234.66$
• $\delta_9 = (\frac{1}{2} * 10 * 9) * \frac{2}{3} * 9 + (\frac{1}{2} * 1 * 9) * \frac{1}{3} * 9 = 283.5$
• $\delta_{10} = (\frac{1}{2} * 10 * 10) * \frac{2}{3} * 10 = 333.33$

$$Vb = \frac{\delta xb}{\delta bb}$$
, here

$$\delta bb = \delta_{10} = 333.33$$

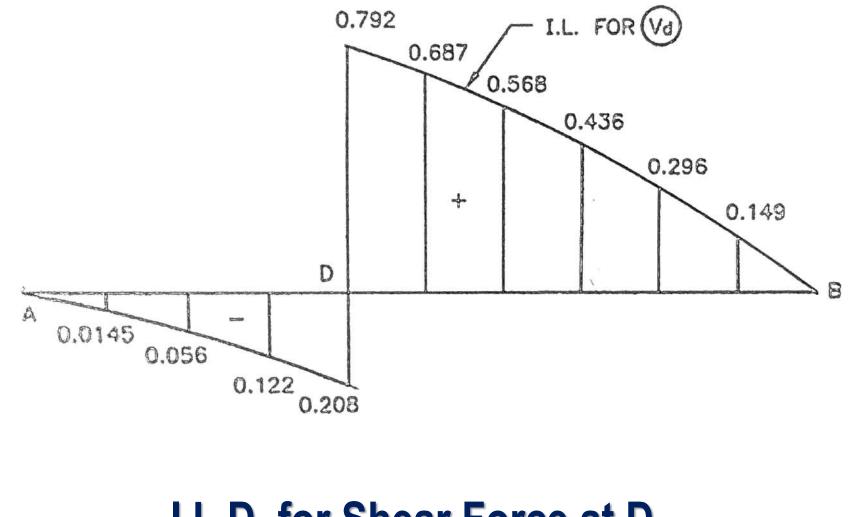
Distance <i>x</i>	Vb
At <i>x</i> = 0	<i>Vb</i> = 0/333.33 = 0
At <i>x</i> = 1	<i>Vb</i> = 4.83/333.33 = 0.0145
At <i>x</i> = 2	<i>Vb</i> = 18.66/333.33 = 0.056
At <i>x</i> = 3	<i>Vb</i> = 40.5/333.33 = 0.122
At <i>x</i> = 4	<i>Vb</i> = 69.33/333.33 = 0.208
At <i>x</i> = 5	<i>Vb</i> = 104.16/333.33 = 0.313
At <i>x</i> = 6	<i>Vb</i> = 144.0/333.33 = 0.432
At <i>x</i> = 7	<i>Vb</i> = 187.83/333.33 = 0.564
At <i>x</i> = 8	<i>Vb</i> = 234.66/333.33 = 0.704
At <i>x</i> = 9	<i>Vb</i> = 283.5/333.33 = 0.851
At <i>x</i> = 10	<i>Vb</i> = 333.33/333.33 = 1


I.L.D. for Shear Force at D

When unit load is in AD:

S.F. at $\mathbf{D}(Vd) = Vb$

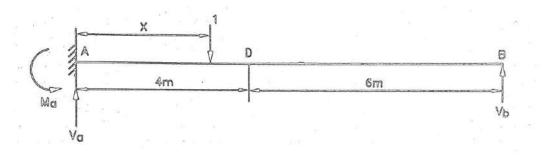
(sum of vertical forces on RHS of D is 0)


Distance <i>x</i>	Vd = Vb
0	0
1	0.0145
2	0.056
3	0.122
4	0.208

When unit load is in DB:

S.F. at
$$D(Vd) = (1 - Vb)$$
 OR $Vd = Va$
 $\therefore (1 - Vb) = Va$

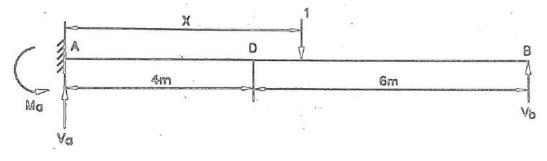
Distance <i>x</i>	Vd = 1 - Vb
4	<i>Vd</i> = 1 – 0.208 = 0.792
5	<i>Vd</i> = 1 – 0.313 = 0.687
6	<i>Vd</i> = 1 – 0.432 = 0.568
7	<i>Vd</i> = 1 – 0.564 = 0.436
8	<i>Vd</i> = 1 – 0.704 = 0.296
9	<i>Vd</i> = 1 – 0.851 = 0.149
10	<i>Vd</i> = 1 – 1 = 0



1411 11144

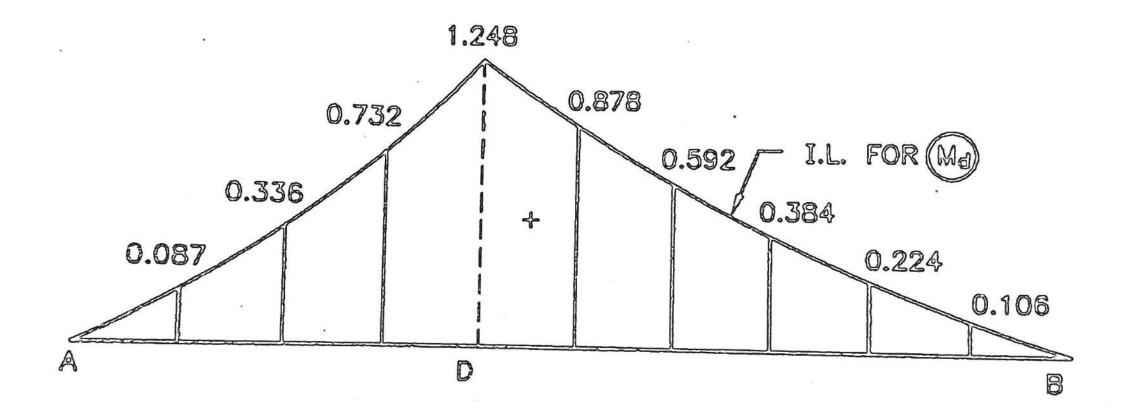
I.L.D. for Shear Force at D

I.L.D. for Bending Moment at D


When unit load is in AD:

Md = Vb * 6

Distance <i>x</i>	Md = Vb * 6
0	$Md = 0 \times 6 = 0$
1	<i>Md</i> = 0.0145 x 6 = 0.087
2	<i>Md</i> = 0.056 x 6 = 0.336
3	<i>Md</i> = 0.122 x 6 = 0.732
4	<i>Md</i> = 0.208 x 6 = 1.248


When unit load is in DB:

Taking moment at right side of D

Md = Vb * 6 - 1(x - 4)

Distance <i>x</i>	Vd = 1 - Vb
4	<i>Md</i> = 0.208 x 6 – 1 (4 - 4) = 1.248
5	<i>Md</i> = 0.313 x 6 – 1 (5 - 4) = 0.878
6	<i>Md</i> = 0.432 x 6 – 1 (6 - 4) = 0.592
7	<i>Md</i> = 0.564 x 6 – 1 (7 - 4) = 0.384
8	<i>Md</i> = 0.704 x 6 – 1 (8 - 4) = 0.224
9	<i>Md</i> = 0.851 x 6 – 1 (9 - 4) = 0.106
10	$Md = 1 \times 6 - 1 (10 - 4) = 0$

I.L.D. for Bending Moment at D

Boost your knowledge

